In a nutshell: The Gauss-Seidel method

Given a system of n linear equations in n unknowns $A\mathbf{u} = \mathbf{v}$, we will use iteration to approximate a solution to this system of linear equations. We will assume that A is either strictly diagonally dominant or symmetric and positive definite, in which case, we are assured that all the diagonal entries are non-zero.

Parameters:

 $\varepsilon_{\text{step}}$ The maximum step size allowed before we consider the method to have converged.

N The maximum number of iterations.

- 1. Define A_{diag} to be the $n \times n$ matrix of the diagonal entries of A and calculate the inverse A_{diag}^{-1} of this matrix, which is that matrix with the reciprocals of each of the diagonal entries of A_{diag} .
- 2. Define A_{off} to be the $n \times n$ matrix of the off-diagonal entries of A.
- 3. Let $\mathbf{u}_0 \leftarrow A_{\text{diag}}^{-1} \mathbf{v}$ and $k \leftarrow 0$.
- 4. If k > N, we have iterated N times, so stop and return signalling a failure to converge.
- 5. Set $\mathbf{u}_{k+1} \leftarrow \mathbf{u}_k$.
- 6. For i going from 1 to n,

a. Update the
$$i^{th}$$
 entry of $(\mathbf{u}_{k+1})_i \leftarrow (A_{\text{diag}}^{-1})_i \cdot (\mathbf{v}_i - (A_{\text{off}})_{i...} \mathbf{u}_{k+1})$ where $(A_{\text{off}})_{i...}$ is the i^{th} row of A_{off} .

- 7. If $\|\mathbf{u}_{k+1} \mathbf{u}_k\|_2 < \varepsilon_{\text{step}}$, return \mathbf{u}_{k+1} .
- 8. Increment *k* and return to Step 4.

Note that if A is a sparse matrix (most entries are zero and stored using a sparse-matrix representation), then it is reasonable to calculate $A_{\text{diag}}^{-1}A_{\text{off}}$ first and then replace Step 6a by:

6a'. Update the
$$i^{\text{th}}$$
 entry of $\left(\mathbf{u}_{k+1}\right)_i \leftarrow \mathbf{u}_{0,i} - \left(A_{\text{diag}}^{-1}A_{\text{off}}\right)_{i,\dots}\mathbf{u}_{k+1}$ where $\left(A_{\text{diag}}^{-1}A_{\text{off}}\right)_{i,\dots}$ is the i^{th} row of $A_{\text{diag}}^{-1}A_{\text{off}}$.